Surface cyclic quotient singularities and Hirzebruch–Jung resolutions

نویسنده

  • Miles Reid
چکیده

If V is an affine algebraic variety and G ⊂ AutV a finite group of automorphism of V , the quotient variety is an affine algebraic variety V/G with a quotient morphism V → X = V/G. A point of X is an orbit of G on V , and the coordinate ring k[X] is the ring of invariants k[V ] of the induced action of G on k[V ]. This chapter studies the simplest case of this construction, when V = C and G = Z/r is the cyclic group of order r acting on C by diagonal matrixes; by a slight normalisation, we can assume that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities

An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and suf...

متن کامل

P-Resolution Fans and Versal Component Dimension for Cyclic Quotient Singularities

We use Altmann’s toric fan description of P-resolutions [Alt98] to calculate dimensions of the (reduced) versal base space components for two-dimensional cyclic quotient singularities.

متن کامل

One-Parameter Toric Deformations of Cyclic Quotient Singularities

In the case of two-dimensional cyclic quotient singularities, we classify all oneparameter toric deformations in terms of certain Minkowski decompositions introduced by Altmann [1]. In particular, we describe to which components each such deformation maps, show how to induce each deformation from a versal family, give explicit equations for each deformation, describe the singularities in the ge...

متن کامل

2 8 D ec 2 00 5 On the Existence of Crepant Resolutions of Gorenstein Abelian Quotient Singularities in Dimensions ≥ 4 Dimitrios

For which finite subgroups G of SL(r,C), r ≥ 4, are there crepant desingularizations of the quotient space Cr/G? A complete answer to this question (also known as “Existence Problem” for such desingularizations) would classify all those groups for which the high-dimensional versions of McKay correspondence are valid. In the paper we deal with this question in the case of abelian finite subgroup...

متن کامل

P-Resolutions of Cyclic Quotients from the Toric Viewpoint

(1.1) The break through in deformation theory of (two-dimensional) quotient singularities Y was Kollár/Shepherd-Barron’s discovery of the one-to-one correspondence between so-called P-resolutions, on the one hand, and components of the versal base space, on the other hand (cf. [KS], Theorem (3.9)). It generalizes the fact that all deformations admitting a simultaneous (RDP-) resolution form one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003